E.5 Exercise 5

\[ \begin{aligned} x_2 &= \frac{1}{s+1}u \\ y &= \frac{1}{s+2}(x_2 + \bar d) \end{aligned} \]
\[ \begin{aligned} \dot x_2 - x_2 &= u \\ \dot y + 2y &= x_2 + \bar d \end{aligned} \]
\[ \begin{aligned} \dot x_1 &= -2x_1 + x_2 + \bar d \\ \dot x_2 &= -x_2 - u \\ y &= x_1 \end{aligned} \]
\[ \begin{aligned} &A = \begin{bmatrix} -2&1\\0&-1 \end{bmatrix} &C = \begin{bmatrix} 1&0 \end{bmatrix} \end{aligned} \]

Reduced observer condition: Observable

\[ M_o = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1&0\\-2&1 \end{bmatrix} \]

Unknown disturbances:

\[ p \geq n_d \rightarrow 1=1 \text{(ok)} \]

Enlarge system with \(\dot d\)

\(d = x_3\), and \(\bar d\) is constant

\[ \begin{aligned} \dot x_1 &= -2x_1 + x_2 + \bar d \\ \dot x_2 &= -x_2 - u \\ \dot x_3 &= 0 \\ y &= x_1 \end{aligned} \]
\[ \begin{aligned} &\tilde A = \begin{bmatrix} -2&1&1\\0&-1&0\\0&0&0 \end{bmatrix} &\tilde C = \begin{bmatrix} 1&0&0 \end{bmatrix} \end{aligned} \]

We need to find a suitable \(T = \begin{bmatrix} \tilde C \\ T_1 \end{bmatrix} \in R^{n\times n}\), it should be:

  • square
  • non-singular
\[ T = I_3 \]

From state equation 1, \(y = x_1\)

\[ \underbrace{\dot y + 2y}_{\eta} = x_2 + x_3 \]
\[ \begin{aligned} \dot x_2 &= -x_2 - u \\ \dot x_3 &= 0 \\ \eta &= x_2 + x_3 \end{aligned} \]
\[ \begin{aligned} \dot x_M &= \underbrace{\begin{bmatrix} -1&0\\0&0 \end{bmatrix}}_{A_d}x_M - \underbrace{\begin{bmatrix} 1\\0 \end{bmatrix}}_{B_d}u \\ \eta &= \begin{bmatrix} 1\\1 \end{bmatrix}x_M \end{aligned} \]
\[ \begin{aligned} \dot{\hat x}_M &= A_d \hat x_M + B_d u + L(\eta - C_d\hat x_d) \\ &= (A_d - LC_d) \hat x_M + B_d u + L(\dot y + 2y) \end{aligned} \]

Dealing with \(\dot y\)

\[ \begin{aligned} \dot{\hat x}_M - L\dot y &= (A_d - LC_d) \hat x_M + B_d u + 2Ly \pm (A_d - LC_d)Ly \\ \xi &= \hat x_M - Ly \\ \dot \xi &= \dot{\hat x}_M - L\dot y \\ &= (A_d - LC_d)\xi + B_d u + (A_d - LC_d)Ly + 2Ly \end{aligned} \]
\[ G(s) = \frac{1}{s+\alpha} \]

We want to do pole-placement with TF

  1. order of \(\tilde R = n-1\), \(n\) is the order of \(\tilde G\), \(n-1 = 1\)
  2. the parameters of \(\tilde R\)
\[ \tilde R = \frac{\delta_v s^v + \delta_{v-1}s^{v-1}+ \dots + \delta_1s + \delta_0}{s^v + \gamma_{v-1}s^v-1 + \dots + \gamma_1s + \gamma_0} \]
  • \(v\) is the order of \(\tilde R\)
  • \(\delta_i\), \(\gamma_i\): parameter
\[ L(s) = \frac{\delta_1 s + \delta_0}{\gamma_1s + \gamma_0}\frac{1}{s(s+\alpha)} \]

We have the desired polynomial

\[ \varphi^* = (s+1)^3 = s^3 + 3s^2 + 3s + 1 \]
\[ \begin{aligned} \varphi_L &= N_L + D_L \\ &= \delta_1s + \delta_0 + (s^2 + s\alpha)(s+\gamma_0) \\ &= s^3 + s^2(\gamma_0 + \alpha) + (\alpha\gamma_0 + \delta_1)s + \delta_0 \end{aligned} \]
\[ \begin{aligned} \begin{aligned} &\gamma_0 + \alpha = 3 \\ &\alpha\gamma_0 + \delta_1 = 3 \\ &\delta_0 = 1 \end{aligned} \Rightarrow \begin{aligned} &\delta_0 = 1 \\ &\gamma_0 = 3-\alpha \\ &3\alpha - \alpha^2 + \delta_1 = 3 \\ &\delta_1 = 3+\alpha^2 - 3\alpha \end{aligned} \end{aligned} \]
\[ \tilde R = \frac{(3+\alpha^2-3\alpha)s + 1}{s+(3-\alpha)} \]

Alternative way for computing \(\tilde R\) parameters

\[ \tilde G = \frac{1}{s(s+\alpha)} = \frac{\tilde B}{\tilde A} \]
  1. coefficient matrix

    \[ \begin{bmatrix} \begin{matrix} \begin{bmatrix} 1\\ \alpha \\ 0 \end{bmatrix} \\ 0 \end{matrix} \begin{matrix} 0 \\ \begin{bmatrix} 1\\ \alpha \\ 0 \end{bmatrix} \end{matrix} \begin{matrix} \begin{bmatrix} 0\\ 0 \\ 1 \end{bmatrix} \\ 0 \end{matrix} \begin{matrix} 0 \\ \begin{bmatrix} 0\\ 0 \\ 1 \end{bmatrix} \end{matrix} \end{bmatrix} \begin{bmatrix} 1\\ \gamma_0 \\ \delta_1 \\ \delta_0 \end{bmatrix} = \begin{bmatrix} 1\\3\\3\\1 \end{bmatrix} \]

    coefficient of \(\tilde A = \begin{bmatrix} 1&\alpha&0 \end{bmatrix}\)

    \[ \begin{aligned} Fx &= b \\ x &= F^{-1}b \end{aligned} \]

Point 2

\[ \begin{aligned} \begin{aligned} &\dot z + \alpha z = u \\ &\dot \eta + \beta \eta = \bar d \\ &y = z + \eta \end{aligned} \Rightarrow \begin{aligned} &\dot z = -\alpha z + u \\ &\dot \eta = -\beta \eta + \bar d \\ &y = z + \eta \end{aligned} \end{aligned} \]

\(A = \begin{bmatrix} -\alpha&0\\0&-\beta \end{bmatrix}\), \(B = \begin{bmatrix} 1\\0 \end{bmatrix}\), \(C = \begin{bmatrix} 1&1 \end{bmatrix}\), \(M = \begin{bmatrix} 0\\1 \end{bmatrix}\)

Disturbance estimation:

  • conditions: \(p\geq n_d\), \(1=1\) (ok)
  • \((A,C)\) is observable, \(M_o = \begin{bmatrix} C\\ CA \end{bmatrix} = \begin{bmatrix} 1&1 \\ -\alpha&-\beta \end{bmatrix}\), if and onlyif \(a\neq b\)
  • enlarged systm

    \[ \begin{aligned} &\dot z = -\alpha z + u \\ &\dot \eta = -\beta \eta + \bar d \\ &\dot d = 0 \\ &y = z + \eta \end{aligned} \]

    \(\tilde A = \begin{bmatrix} -\alpha&0&0\\0&-\beta&1\\0&0&0 \end{bmatrix}\), \(B = \begin{bmatrix} 1\\0\\0 \end{bmatrix}\), \(C = \begin{bmatrix} 1&1&0 \end{bmatrix}\),

  • compute state observer

    \[ \begin{aligned} \dot{\hat x} &= \underbrace{\tilde A \hat x + \tilde B u}_{\text{prediction}} + \underbrace{L(y-\tilde C \hat x)}_{\text{correction}} \\ &= (\tilde A - L\tilde C)\hat x + \tilde B u + Ly \end{aligned} \]

    We can calculate the \(L\) by matlab function: L'=place(A_tilde',C_tilde',[poles])

Comments