E.3 Exercise 3
Ex. 1: Given the discrete-time system:
and the state space representation
Find
-
Find the poles and zeros of \(G(s)\),
-
Poles
1.1 Find Minors
\[ M_{11} = \frac{z-1}{(z-0.5)^2} \]\[ M_{12} = \frac{z}{(z-0.5)^2} \]1.2 Least Common Denominator \(\rightarrow\) \(\varphi(z)\)
\[ \varphi(z) = (z-0.5)^2 \]1.3 Roots
\[ z_{1,2} = 0.5 \] -
Zeros
2.1 Normal order
1
2.2 All minors of order 1
\(M_{11}\), \(M_{12}\)
2.3 Max common devisor when \(\varphi(z)\) is denominators
\(z(z) = 1\), no zeros
-
-
Determine how many outputs can be regulated to constant references,
Control
\[ \begin{aligned} p\leq m \\ \text{No derivative action} \begin{aligned} s=0 \\ z=1 \end{aligned} \end{aligned} \]considor only \(y_1\)
check conditions integration
\[ G_1(z) = \frac{z-1}{(z-0.5)^2} \left\{\begin{aligned} &1 \leq 1 \\ &\text{Derivative action} \end{aligned}\right. \]consider \(y_2\)
\[ G_2(z) = \frac{z}{(z-0.5)^2} \left\{\begin{aligned} &1 \leq 1 \\ &\text{No derivative action} \end{aligned}\right. \]Static gains, find \(u_\infty\)
\[ G(z=1) = \begin{bmatrix} 0\\4 \end{bmatrix} \]\[ y_\infty = G(1)u_\infty \]\[ y_\infty = [0]u_\infty \text{(No)} \quad y_\infty = 4u_\infty \text{(Yes)} \] -
Verify there are no invariant zeros in \(z=1\), using the state space model.
\[ P(z) = \begin{bmatrix} zI - A & -B \\ C & D \end{bmatrix} = \begin{bmatrix} z & -1 & 0 \\ 0.25 & z-1 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]\[ P(z=1) = \begin{bmatrix} 1 & -1 & 0 \\ 0.25 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]No zeros in 1
-
Assume the states are measurable, show how to design a pole placement scheme guaranteeing zero error robust regulation (refer to Figure 1)
Enlarged system
\[ \dot{\tilde x} = \tilde A \tilde x + \tilde B u + \tilde M d \leftarrow \text{goal} \]\[ \tilde x = \begin{bmatrix} x_1 \\ x_2 \\ \eta \end{bmatrix} \quad \dot{\tilde x} = \begin{bmatrix} \dot x_1 \\ \dot x_2 \\ \dot\eta \end{bmatrix} \]\[ \eta = \frac{1}{z-1}(y_2^\circ - y_2) = \frac{e_2}{z-1} \]\[ \begin{aligned} \eta(k+1) &- \eta(k) = e_2(k) \\ \eta(k+1) &= y_2^\circ - y_2(k) + \eta(k) \\ &= y_2^\circ + \eta(k) - C_2x(k) \end{aligned} \]\[ \begin{aligned} x(k+1) &= Ax(k) + Bu(k) \\ \eta(k+1) &= y_2^\circ + \eta(k) - C_2x(k) \end{aligned} \]\[ \tilde x(k+1) = \begin{bmatrix} A & \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ C_2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \eta \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix}u + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} y_2^\circ \]To do the pole-palcement, we need to check the reachablility of \((\tilde A, \tilde B)\), which is equilvant to \((A, B)\),
\[ \begin{aligned} M_R &= \begin{bmatrix} B & AB \end{bmatrix} \\ &= \begin{bmatrix} 0&1 \\ 1&1 \end{bmatrix} \text{(ok)} \end{aligned} \]We can use the matlab function
K = place(A_tilde, B_tilde, [P_1, P_2, P_3])
toplace the poles,\[ K = \begin{bmatrix} K_1 & K_2 & K_\eta \end{bmatrix} \] -
In case the state are not measurable, can we use a static observer?
Staic Observer
Conditions of static observer: \(C\) is suqare, \(C\) is non-singular
Ex. 3: Consider the continous system
and the equilivrium point \(\bar x = 1\), \(\bar u = 1\). Design a pole-placement
Point \(\bar x = 1\), \(\bar u = 1\),
The system is unstable since we have the pole \(=2\),
\(A = 2\), \(B = -2\), \(C = 1\), \(D = 0\),
Pole-placement requires the reachability that \(M_R = [B] = [-2]\), (ok)
\(p = -1 = 2+2K_x\), \(K_x = -\frac32\)
Design PI for performances
We treat the feedback controlled system as \(\tilde G = \frac{-2}{s+1}\),
The PI regulator have the TF: \(K_p \frac{sT_i + 1}{sT_i}\), and we want \(R(s) = \frac{s+1}{s}\frac{\omega_c}{\mu}\)
And \(L(s) = RG = \frac{\omega_c}{s}\)
Point 2
Conditions for the enlarged systems
\(p = 1 \leq m = 1\), (ok),
derivative action (no) \(G(s) = \frac{-2}{s-2}\)
Point 2
...
Poles = \([-1, -1]\)
Compute \(K\)

-
Poles All minous of \(G(s)\)
\[ M_{21} = \det \begin{bmatrix} \frac{1}{s+1}&\frac{1}{s-0.5} \\ 0&\frac{1}{s+2} \end{bmatrix} \]Least common denominator
\[ \varphi(s) = \frac{1}{(s+1)(s+2)(s-0.5)} \]Poles: \(s=-1\), \(s=-0.5\), \(s=-2\)
Zeros:
normal orders \(=2\),
Minors of order 2 with \(\varphi(s)\) at denominator.
\[ M_{21} = \frac{1}{(s+1)(s+2)}\frac{s-0.5}{s-0.5} \]\(s = 0.5\)
Does the cancellation happen?
\[ L(s) = G(s)R(s) = \begin{bmatrix} \frac{1}{s+1}&\frac{1}{s-0.5} \\ 0&\frac{1}{s+2} \end{bmatrix} \begin{bmatrix} 1&1 \\ 0&\frac{s-0.5}{s-0.5} \end{bmatrix} = \begin{bmatrix} \frac{1}{s+1}&0 \\ 0&\frac{s-0.5}{(s+1)(s+2)} \end{bmatrix} \]Poles
\[ M_2 = \frac{(s-0.5)}{(s+1)^2(s+2)} \]Poles \(= -1, -1, -2\)
No it is not enough due to control condition
check all 5 TF: \(S(s)\), \(T(s)\), \(\frac{U(s)}{\partial u}\), \(\frac{U(s)}{y}\), \(\frac{y}{\partial u}\)