8. L-Norm and H-Norm
8.1 L-Norm of a Vector
Given \(e = \begin{bmatrix} e_1 & \dots & e_m \end{bmatrix}^T\), the L-norm of the vector is:
Description | Formulation |
---|---|
\(L_2\) norm | \(\left\lVert e \right\rVert_2 = \sqrt{e^Te} = \sqrt{\sum_{i=1}^m e_i^2}\) |
\(L_n\) norm | \(\left\lVert e \right\rVert_n = (\sum_{i=1}^m\left\lvert e_i \right\rvert ^n)\) |
\(L_\infty\) norm | \(\left\lVert e \right\rVert_\infty = \sup_i \left\lvert e_i \right\rvert\) |
8.2 L2-Norm of a Matrix
Given \(m\times n\) matrix \(A\), the induced 2-norm of this matrix is:
Notes
-
Singular value:
Given \(A \in C^{m,n}\), \(i = 1, 2, \dots \min{\{m,n\}}\), the singular values of \(A\) are the largest roots between \(\lambda_i(A^*A)\) and \(\lambda_i(AA^*)\):
\[ \begin{aligned} \sigma_i (A) &= \sqrt{\lambda_i(A^*A)} = \sqrt{\lambda_i(AA^*)}, &m=n \\ \sigma_i (A) &= \sqrt{\lambda_i(A^*A)}, &m<n\\ \sigma_i (A) &= \sqrt{\lambda_i(AA^*)}, &m>n \end{aligned} \]
Notes
-
SVD decomposition:
Given the SVD decomposition: \(A = U\Sigma V^*\), where \(\Sigma \in \mathbb R^{m\times n}\), \(U \in C^{m,m}\), \(V\in C^{n,n}\), and \(U\), \(V\) are unitary matrices, thus, there have:
\[ \begin{aligned} U^*U &= UU^* = I \\ V^*V &= VV^* = I \end{aligned} \quad \Rightarrow \quad \begin{aligned} \sigma_i(U) &= 1 \\ \sigma_i(V) &= 1 \end{aligned} \]Condition Formulation \(m > n\) \(\Sigma = \begin{bmatrix}\Sigma_1 \\ \mathbf 0\end{bmatrix}\) \(m < n\) \(\Sigma = \begin{bmatrix}\Sigma_1 & \mathbf 0\end{bmatrix}\) \(m = n\) \(\Sigma = \Sigma_1\) where \(\Sigma_1 \in \mathbb R^{k\times k}\), \(k = \min{\{m,n\}}\), it has:
\[ \Sigma_1 = \begin{bmatrix} \sigma_1(A) && \\ &\ddots& \\ &&\sigma_k(A) \end{bmatrix} \]\(\sigma_1(A) \geq \sigma_2(A) \geq \dots \geq \sigma_k(A) \geq 0\) and we can know that:
\[ \begin{aligned} \bar \sigma(A) &= \max_i \sigma_i (A) = \sigma_1(A) \\ \underline \sigma(A) &= \left\{\begin{aligned} \min_i \sigma_i &= \sigma_k &m>n \\ &0 &m<n\end{aligned}\right. \end{aligned} \]
Info
Proof:
8.2 L-Norm of a Signal
8.2.1 L-norm for signal
Given \(e = \begin{bmatrix} e_1 & \dots & e_m \end{bmatrix}^T\), the L-norm of a signal is:
Description | Formulation |
---|---|
\(L_2\) norm | \(\left\lVert e \right\rVert_2 = \sqrt{\int_{-\infty}^{+\infty} e^T(t)e(t)}\) |
\(L_\infty\) norm | \(\left\lVert e \right\rVert_\infty = \sup_t (\sup_i \left\lvert e_i(t) \right\rvert)\) |
8.2.2 L2-gain for system
From \(L_2\) norm of the system, we can give the \(L_2\) Gain:
-
We assume that \(u(t) = 0, t < 0\), and the input is boundary, which satisfy:
\[ \int_{0}^{+\infty} u^T(t)u(t)dt < \infty \]if \(u\in L_2\),
\[ ||u||_2 = \sqrt{\int_0^{+\infty} u^T(t)u(t)dt} \]Thus, we can get the \(L_2\) gain of the system:
\[ \begin{aligned} \gamma_2 &= \sup_{u\in L_2, ||u||_2 \neq 0} \frac{||y||_2}{||u||_2} = \sup_{u\in L_2, ||u||_2 \neq 0} \frac{S(u(s))}{||u||_2} \\ \gamma_2||u||_2 &\geq ||y||_2, \forall u \in L_2 \end{aligned} \]The system is input output \(L_2\) stable if its \(L_2\) gain is finite.
Example
Given the system,
We can find the \(L_2\) norm and \(L_2\) gain of the system,
The system is not \(L_2\) stable.
Example
Given a cascaded system,
Where, \(u \in L_2\) \(\to\) \(U(j\omega)\), with the Fourier Transform (FT),
Within the Parseval Theorem, we have:
if \(|G(j\omega)| \leq k\), with \(|G(j\bar \omega)| = k\),
8.3 H-Norm
8.3.1 H-infinity norm for SISO system
Given a SISO A.S. linear system and its \(H_\infty\) norm,
8.3.2 H-infinity norm for MIMO system
To extend this result to MIMO A.S. linear system,
if \(m=3\), \(n = 4\), there have \(k = \min(m,n) = 3\) singular values,
At the position when \(m=n=1\), we get the upper bound of the singular value,
Info
Proof:
8.3.3 H-2 norm for SISO system
If system \(S\) is an A.S. strictly proper system, we can define the \(H_2\) norm of \(G\),
If the system is SISO,
Here, \(||G||_2\) equals to the impulse response \(||\delta||_2\), to evaluate it in bode plot, we let:
Example
8.3.4 H-2 norm for MIMO system
If the system is MIMO
8.3.5 Conclusion
Description | Formulation |
---|---|
\(H_2\) norm for SISO | \(\left\lVert G \right\rVert_2 = \sqrt{\frac{1}{2\pi}\int_{-\infty}^{+\infty} \left\lvert G(j\omega) \right\rvert^2 d\omega}\) |
\(H_2\) norm for MIMO | \(\left\lVert G \right\rVert_2 = \sqrt{\frac{1}{2\pi}\int_{-\infty}^{+\infty} \text{tr}(G(j\omega)G^*(j\omega)) d\omega}\) |
\(H_\infty\) norm | \(\left\lVert G \right\rVert_\infty = \sup_\omega \left\lvert G(j\omega) \right\rvert\) |