thus we have: \(A^T-C^TL^T = \tilde A - \tilde B \tilde K\), Given the observable matrix:
\[
\begin{aligned}
&M_O = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1}\end{bmatrix} \Rightarrow M_O^T = \begin{bmatrix} \tilde B & \tilde A \tilde B & \cdots & \tilde A^{n-1} \tilde B\end{bmatrix}
\end{aligned}
\]
A N&S condition for the design of an asymptotic observer with arbitrarily specified eigenvalue of the estimation error dynamics is that \((A,C)\) is observable.
Given a system \(p = 1\), we can apply Ackermann's formula,
\[
\begin{aligned}
&\dot x = Ax + Bu + Md, &x\in\Re^n, u\in\Re^m\\
&y = Cx + Du + Nd, &y\in\Re^p, d\in\Re^r
\end{aligned}
\]
If \(d\) is measurable, we can calculate the estimation error directly:
\[
\dot{\hat x} = A \dot{\hat x} + Bu + Md + L(y - C\hat x - Du - Nd)
\]
We let \(e=x - \hat x\), thus we have:\(\dot e=(A-LC)e\)
If \(d\) is not measurable:
\[
\begin{aligned}
\dot{\hat x} &= A \dot{\hat x} + Bu + L(y - C\hat x - Du) \\
e &= x - \hat x \\
\dot e &= (A-LC) e + (M-LN) d
\end{aligned}
\]
If \(d(t) = \bar d\), \(\forall t \geq 0\),
\[
e_\infty = -(A-LC)^{-1} (M-LN) \bar d
\]
We can draw the system schematic:
1.3 Estimation of Constant Disturbances via Observer Design
Motivations:
You can estimate the state correctly
You can use the disturbances estimation for the disturbance compensation
Consider a system with disturbance:
To eliminate the disturbance, we can design a disturbance estimator:
If the disturbance is constant, \(d(t) = \bar d\), \(\forall t\),
\[
\begin{aligned}
&\dot x = Ax + Bu + Md, &x\in\Re^n, u\in\Re^m\\
&y = Cx + Du + Nd, &y\in\Re^p, d\in\Re^r
\end{aligned}
\]
Since \(d\) is constant, \(\dot d = 0\), and we have:
\[
\begin{aligned}
\begin{bmatrix} \dot x \\ \dot d \end{bmatrix} &=
\underbrace{\begin{bmatrix} A&M \\ 0&0 \end{bmatrix}}_{\tilde A}
\begin{bmatrix} x \\ d \end{bmatrix} +
\underbrace{\begin{bmatrix} B \\ 0 \end{bmatrix}}_{\tilde B} u \\
y &= \underbrace{\begin{bmatrix} C&N \end{bmatrix}}_{\tilde C}
\begin{bmatrix} x \\ d \end{bmatrix} + \underbrace{D}_{\tilde D} u
\end{aligned}
\]
The condition should be satisfied for designing the observer:
\((\tilde A, \tilde C)\) must be observable \(\Leftrightarrow\)\((A,C)\) is observable
\(\text{rank}\begin{bmatrix} A&M \\ 0&0 \end{bmatrix} = n+r \left\{\begin{aligned}
&r \leq p \quad \text{more output than disturbances} \\
&\text{No invariant zero in 0 in the transfer matrix for } d \text{ to } y
\end{aligned}\right.\)
What are the close loop eigenvalues?
We assume the order of the system is \(n\),
\[
\begin{aligned}
\text{system:}&\quad \left\{\begin{aligned}
&\dot x = Ax + Bu \\
&y = Cx + Du
\end{aligned}\right. \\
\text{control law:}&\quad u = -K\hat x + \gamma \\
\text{observer:}&\quad \dot{\hat x} = A \hat x + Bu + L(y-C\hat x -Du)
\end{aligned}
\]
Apply the controller and observer to the system:
\[
\begin{aligned}
\dot x &= Ax - BK \hat x + B\gamma \\
\dot {\hat x} &= A\hat x -BK\hat x + B \gamma + L(y-C\hat x)
\end{aligned} \\
\]
Since we have: \(e = x - \hat x\),
\[
\left\{\begin{aligned}
\dot x &= (A-BK)x + BKe + B\gamma \\
\dot e &= (A-LC)e
\end{aligned}\right.
\]
1.4 Separation Principle
We can let:
\[
\tilde A = \begin{bmatrix} A-BK&BK \\ 0&A-LC \end{bmatrix}
\]
The eigenvalue of \(\tilde A\) are the union of the eigenvalue of \(A-BK\) and \(A-LC\), it means that we can design controller and observer independently.
2. Stabilizing Regulator Transfer Matrix
We replaced observer with the transfer matrix \(R(s)\),
to find the expression of \(R(s)\),
\[
\begin{aligned}
\text{control law: }& \quad u = -K\hat x \\
\text{observer: }& \quad \dot{\hat x} = A \hat x + Bu + L(y-C\hat x)
\end{aligned}
\]
We have:
\[
\begin{aligned}
\dot{\hat x} &= \overbrace{(A-BK-LC)}^{\tilde A} \hat x + \overbrace{L}^{\tilde B}y \\
u &= \underbrace{-K}_{\tilde C}\hat x
\end{aligned}
\]
The transfer matrix is:
\[
R(s) = K(sI - (A-BK-LC))^{-1}L
\]
3. Reduced Order Observer (RO)
For the linear system with the state space equation below:
\[
\left\{\begin{aligned}
\dot x &= Ax + Bu \\
y &= Cx
\end{aligned}\right.
\]
We can transfer the system into canonical form,
\[
\begin{aligned}
\tilde x &= Tx \\
\tilde A &= TAT^{-1} \\
\tilde B &= TB \\
\tilde C &= CT^{-1} = \begin{bmatrix} \mathbf I&\mathbf 0 \end{bmatrix}
\end{aligned}
\]
\(T = \begin{bmatrix} C \\ T_1 \end{bmatrix}\), \(\det T \neq 0\)
\((A,C)\) should be observable
We have the output part \(y\) and other unknown states \(x_v\), \(\tilde x = \begin{bmatrix} y \\ \tilde x_v \end{bmatrix}\), thus: